BARR

www.barr.com

Office: Minneapolis, MN

Considerations for per- and polyfluoroalkyl substances (PFAS) in the watershed district

Barr Engineering Co.

To view the presentation as given at the board meeting, click please click the link below:

https://youtu.be/zdQw09N1Dv8?t=3679.

PFAS impacts to human health and the environment

Best management practices and treatment technologies

Evaluation and strategies for watershed district managers

Two decades of PFAS experience

2002

- Assessed air, water, waste output for industry users
- Developed stack sampling and analytical methods for PFOA

2004

 Developed solute-transport models for MN Pollution Control Agency and MN Dept of Health to evaluate PFAS, still sought by clients to date

2015

 Investigated and addressed contaminants at multiple sites in Eastern U.S. for active or former manufacturing facilities

2021

- Designed / installed full-scale water treatment system addressing PFAS for public sector client
- Conducted PFAS stack test sampling using OTM-45

2020

 2000
 2005
 2010
 2015

2004-2015

 Worked on various PFAS projects for manufacturing and municipal clients

2016

 Developed best practices for sample collection to reduce or eliminate watersample-and-blank cross contamination

2017

 Worked with multiple laboratories to help reduce or eliminate method blank cross contamination

2018

 Responded to industrial emergency event designed / installed rapid PFAS treatment system

PFOA

PFOS

6:2 FTS

- Man made chemicals
- Approx. 4,000-6,000 compounds
- Per vs. Poly fluorinated
 - **P** per
 - **F** fluorinated
 - X length of carbon chain
 - A or S definition of functional group

PFAS properties

- Heat, oil, stain, and water resistant
- Resistant to biodegradation
- Destroyed at high temperatures
- Semi-volatile
- Miscible in water
- Some affinity for organic carbon

PFAS properties

Uses and history

- Used in coating and waterproofing processes, fire suppression and to reduce surface tension
 - Products include ski wax, non-stick cookware, clothing/waterproofing, automotive, cosmetics
- Production of PFOA and PFOS phased out
 - Current products have different chemical makeup
- Historical chemicals were found to be persistent
- Historical production created PFAS mixture

Human health and the environment

Human health and the environment

- PFAS do not break down in the environment
- Half-life of PFOA in humans is ~4 years, half-life of PFOS is about ~5 years
- Human health risks may include cancer, liver damage, thyroid disease
- Bioaccumulate (build-up) in fish and wildlife

Research on the health effects of PFAS is evolving

2016

EPA released health advisory levels for PFOA/PFOS of 70 parts per trillion levels

2018

Agency for Toxic Substances and Disease Registry (ATSDR) draft report on PFAS listed potential health effects for some additional PFAS compounds

2021

EPA releases draft scientific documents addressing drinking water health risks for PFOA and PFOS

| 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022

2022

EPA releases interim updated drinking water health advisories for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS)

10

Federal and state regulatory action

EPA PFAS Strategic Roadmap

https://www.epa.gov/system/files/documents/2021-10/pfas-roadmap final-508.pdf

- Sources in focus
- Buildout of regulatory framework
- Multi-media focus
- Lifecycle analysis
- DisadvantagedCommunity protection

Recent Minnesota actions - PFAS

https://www.pca.state.mn.us/sites/default/files/p-gen1-22.pdf

Emphasis on:

- Sampling
- Addressing historical contamination
- Certain industries
- Key aspects of plan:
 - Prevent PFAS pollution wherever possible
 - Manage PFAS pollution when prevention is not feasible or pollution has already occurred
 - Clean up PFAS pollution at contaminated sites

Potential sources of PFAS in and around RWMWD

Recent Minnesota actions – PFAS Monitoring Plan

- > 100 named facilities
- Air, Wastewater, Waste Management, Stormwater, Remediation
- Implementation 2022-2023 and beyond

https://www.pca.state.mn.us/air-water-land-climate/monitoring-pfas

PFAS Sources and Transport

Aqueous Film-Forming Foam (AFFF)

2 Primary Manufacturers

Secondary
Manufacturers and
Consumers/Users

4 Landfills

Publically Owned Treatment Works (POTW)

6 Biosolids

PFAS fate and transport

- Still learning about PFAS and surface water interaction
 - Dissolved versus particulate
 - Contact time and transport
 - Runoff events and sediment transport

19

Considerations for PFAS in surface and groundwater

- Source reduction or elimination primary mechanism to remove PFAS in the environment
- Emerging technologies to treat PFAS
- Ongoing testing and monitoring to understand extent of PFAS in the environment
 - Testing is complex and expensive

Remediation and treatment technologies

Remediation and treatment technologies

- Focus on drinking water and wastewater technologies
 - Primary technologies granular activated carbon (GAC) and ion exchange (IX)
- Pre-treatment important to address PFAS

22

Emerging surface water solutions

- Surface water treatment still emerging
 - Foam fractionation
 - Capture and divert stormwater
 - Storage and treatment

24

Planning and funding

Who is responsible to address PFAS?

- U.S. EPA setting national maximum contamination limits (MCLs) and federal regulatory framework
 - Clean Drinking Water Act
 - Surface Water Act
 - Clean Air Act
- MPCA taking action to understand full extent of PFAS in Minnesota and can set state regulatory framework
- Minnesota Department of Health (MDH) sets drinking water standards

3M Settlement – Priority 2 workgroups and grants

- \$20 million in grant money
 - "to compensate for losses to recreational and ecological resources"
 - DNR and MPCA will convene two work groups to provide input on Priority 2 planning

3M Settlement – Priority 2 workgroups and grants

- Priority 2 Resident Work group
 - Provide feedback on Priority 2 goals and planning processes to the DNR and MPCA
 - Work Group membership open to residents from Ramsey, Washington, and Dakota counties
 - Application deadline February 21,
 2023
- Priority 2 Subgroup: Ecosystem
 Services and Recreation

Potential funding sources

- Infrastructure Investment and Jobs Act (IIJA)
- Potential state funding
- Grants

Key takeaways

Continued focus on PFAS

Identify and evaluate

Decide and develop a plan

Questions?

BARR

npalatiello@barr.com <

Office: Minneapolis, MN

952.832.2988

Thank You